FPHOTOMOD Drone Survey_ Digital Topographic MAP Drawing in 1/1,000 scale

2019. 10. 28

PHOTOMOD UAS

- 1. Add images
- 2. Interior orientation
- 3. Exterior orientation
- 4. Relative orientation
- 5. GCP observation
- 6. Block Adjustment

PHOTOMOD UAS

Aerial Triangulation	Compu	ute DEM Compute Orthophoto	🥏 🖗) 🕅 🚟 🖬 😭	P 👻	i 🔲 📓 😂 i 🛅 i		S 🖉 🖉 🔊 🗠 📓
7. Points 8. Filter points		9. TIN		10. DEM		11. Contours		
🗯 Compute points	\$		⇒	* <u>入</u> Build TIN	\$	🙀 Build from TIN	⇒	🔊 Build contours
7. Dense DSM		8. Filter DSM		9. Restore surface		10. Contours		
Nense model	⇒	暴 Buildings and vegetation filter	⇒	🔝 Fill NULL cells	⇒	🔊 Build contours		

- 7. Create points / DSM
- 8. Point, DSM Filter building, geographic features
- 9. Generate TIN using points / Fill in NULL value of DSM
- **10. Generate DEM using TIN**
- **11. Create contours**

- 1. Orthorectification
- 2. Start GeoMosaic

- 1. Importing metadata
- 2. Generating Tie Points
- 3. Observing GCPs
- 4. Drawing topographic map
- 5. Generating TIN/DSM
- 6. Orthorectifying and mosaicking

1. Extract metadata(Camera, EO) from JPG

	DJI_0021.JPG 속성		>
일	반 보안 자	네히 이전 버전	
	속성	값	^
		4000 × 2000	
	사진 그기	4000 X 5000	
		4000극실	
	숲의 스쿄 해사트	3000-12	
	구성 애성도 스지 해사도	72 DPI	
	구역 애정도	72 DPI	
	미드 구군 아츠	24	
	입국 훼사도 다이	2	
	애상도 단위	2	
	역 내 표	SRGB	
	픽셀당 압축 미드	3.5403613333333332	
	카메라		
	카메라 제조업체	IID	
	카메라 모델	FC350	
	F-스톱	F/2.8	
	노출 시간	1/2237초	
	ISO 감도	ISO-100	
	노출 바이어스	0 단계	
	초점 거리	4mm	
	조리개 최대 개방	1	\mathbf{v}
	GPS		
	위도	36; 4; 50.86100000004424	
	경도	126; 26; 35.744100000010732	
	고도	31.783	

- Camera-integrated Drones
 - PHANTOM, INSPIRE, etc.
 - Camera and location information can be imported from JPG

• Detachable camera Drones

- Drones with separate camera such as fixed wing Drones.
- camera information is imported from JPG. The location and angle information are extracted from the aircraft attitude control controller.

1. Camera-integrated Drones

1. Add images Erom files From resourses 2. Interior orientation Import from metadata Cameras

3. Exterior orientation

🙀 Import from file

Exterior orientation data list

1. Add images

2. Import matadata, camera informaation

3. Verify XYZ geo-location value(Drone posture information is not included.)

😒 Exterior orientation parameters									
🖓 🛤 🔐 🗙 h 📭 🚧 💁 🚧 💁 🔺 🐄 🏧 🖉 💷 🗠 💷 🚟 🚣 🕎 🗸 🕼 🧱									
Code	Name	X, m	Y, m	Z, m	Omega, °	Phi, °	Kappa, °		
<mark>▼ 2</mark>	DJI_0002	172383.355	359416.277	360.537					
× <mark>3</mark>	DJI_0003	172426.570	359411.990	360.537					
~ 4	DJI_0004	172469.050	359408.060	360.537					
× 5	DJI_0005	172515.026	359404.749	360.637					
<mark>▼ 6</mark>	DJI_0006	172556.124	359400.115	360.637					

1. Detachable camera Drones

 1. Add images
 1. Add images

 Images
 1. Images

 Images
 1.

Exterior orientation parameters									
🗞 🏘 🍟 🗙 物 🔖 xw 👰 🔽 🛣 📉 xwz xvz XXI 🖉 /‡ 🕫 🅎 🔗									
Code	Name	X, m	Y, m	Z, m	Omega, °	Phi, °	Kappa, °		
▼ 3	DSC000	164130.868	539424.107	166.37	- <mark>0.84</mark> 28	-2.4827	-38.825		
~ 4	DSC000	164149.337	539441.986	1 <mark>66.9</mark> 5	2.90049	1.63161	-39.124		
▼ 5	DSC000	164168.553	539459.204	167.28	2.16982	0.47591	-42.313		
× 6	DSC000	164188.509	539475.892	167.63	1.56063	0.09059	-44.620		
▼7	DSC000	164209.319	539492.379	168.03	0.65693	-1.5289	- <mark>4</mark> 6.084		

-

2. The creation of Tie Points

➡ Automatic Tie Point Measurement ×						
Correlator configuration						
Userpreset \checkmark						
Name ▲ ✓ ⊕ ✓ 1 ✓ ⊕ ✓ 2 ✓ ✓ ⊕ ✓ 3 ✓ ✓ ⊕ ✓ 4 ✓ 5 ✓ ✓ ⊕ ✓ 5 ✓ 6 ✓ ✓ ✓ ✓ 6 ✓ ✓ ✓						
 Calibrate camera Make block adjustment Parameters Assign self-calibrated camera 						
Delete intermediate data Low block layout quality Distributed processing OK Cancel						

- Set up tie points
 - Pyramid Steps for Creating Tie Points.
 - The number of tie points created in one image
 - Set up the amount of error
 - The above settings affect accuracy and calculation time.
 - Select the camera calibration option,
 - : change the camera distortion

correction and information.

2. Create and adjust tie points

2. Tie Point adjustment

- Delete or move a tie point with an incorrect location
- Delete tie points of unusual height
- Delete tie points created in waterbody (sea, lake, etc.)

2. Create Tie Points – Imagery before and after adjustment

Images created only with metadata.

Images adjusted with Tie Points.

2. Create Tie Points – Imagery before adjustment

2. Create Tie Points – Imagery after adjustment

3. GCP Observation

- Import original GCP data, or input GCPs
- Select XYZ, XY, Z points to use
- Observe all possible images of GCP location

- Do not observe images obscured by terrain features (unsure points)
- Better in 3D stereo mode for increasing accuracy
- remove Y parallax and adjust Z in 3D stereo mode.

4. Produce digital topographic map (1:1000)

Codes Attri	butes			
Vision	Code v	Name	Туре	Color
Ť	1111	보통철도	L	
Ť	1222	플랫폼의지붕	С	
Ť	2111	실폭하천	L	
Ť	2112	세류	L	
Ť	2114	호수,저수지	L	
Ť	2211	콘크리트제방(상)	L	
3	2241	수문	L	
3	2243	보	L	
3	3111	고속국도	L	
3	3112	일반국도	L	
•	3113	지방도	L	
3	3114	특별시도광역시도	L	
3	3115	시도	L	
1	3116	군도	L	
Ť	3117	면리간도로	L	
Ť	3118	부지안도로	L	

- Use the existing code you used and the layers with 8-digit layer code
- 3D drawing with polarized or blue red glasses
- Can be drawn with a mouse
- can be Searched for the layers you need.
- Select and display only the layers you need

4. Produce digital topographic map (1:1000)

- Various ways to draw a roof.
- Create contours from drawing data or draw contours manually

 Import and export DXF and SHP files

• Edit Vector Data

Drone images with the completed topographic map

The completed digital topographic map (DXF OUT)

4. Produce digital topographic map (1:1000)

4. Produce digital topographic map (1:1000)

5. Generate TIN, DEM

- Create TIN after creating points
- Review and Fix TIN errors
- Generate DEM from TIN
- Create DSM or DTM
- Create contours from DTM

6. Generate ortho-image

- Create ortho-images using DSM or DEM
- create borderlines
- Modify images to fit geograp hic feature such as buildings and roads based on boundaries
- Auto color balancing

6. Before and after correction of ortho-image

6. Before correction of ortho-image

6. After correction of ortho-image

3D stereoscopic work using drone image is completely possible.

- Convenient solution for 3D drawing with drone image

CPU management with Distributed Processing

- PC resource management is the key to process large sized drone images
- Maximize work reliability with PHOTOMOD Distributed Processing function

Compatibility of Korean National Topographic Map (1:1000) with accuracy requirements

Map Scale	Sta	indard Deviati	on	Maximum Error			
	Planimetric	Contours	Height	Planimetric	Contours	Height	
1/1000	0.2m	0.3m	0.15m	0.4m	0.6m	0.3m	

In conclusion. PHOTOMOD UAS solution is a very flexible solution for producing 1:1000 digital topographic map using drone images.

