Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

- Up to now we expect accuracy of common drones to be about the pixel size.
- Newer projects show that sub pixel accuracy is possible using photographs from a common drone and careful use of PHOTOMOD-UAS

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

For this work several projects over villages were performed with:

- Phantom4 pro drone (1 inch sensor with mechanical shutter)
- PHOTOMOD-UAS 6.3

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

Characteristics of the flights

- Performed with the standard flight program of DJI with
- 5cm pixel size
- 60% overlap and 60% sidelap

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

Tasks for completing each project

- Premark Ground Control Points
- Geodetic measurments with GNSS
- Flight plan and Flight
- Download the geotaged photographs
- Process Photographs with PHOTOMOD-UAS

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

Premark Ground Control Points

- Premarked on cement roads with red color
- Or with removable printed targets

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

Measure Ground Control Points

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

Planning and conducting the Flight

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

Download geotaged images

- Phantom geotags images automatically but only with X,Y,Z
- Mission Planner (open source) gives file with X,Y,Z,Yaw,Pitch,Roll of each image
- Photomod handles both cases effectively.

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

Process Photographs with PHOTOMOD-UAS

Several things must be taken into account.

- It is good to define a geoid
- Careful definition of project min, max relief elevation
- Phantom gives smallest values in Z of photographs

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

Process Photographs with PHOTOMOD-UAS

- Select a camera previously calibrated
- Split block by external orientation data

The result will be a well oriented block

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

Process Photographs with PHOTOMOD-UAS

- Automeasure points
- -Without camera calibration
 - -Without low block quality

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

Process Photographs with PHOTOMOD-UAS

- Import and measure GCP's
- Change accuracy of GCP's to a realistic value 1 or 2 cm
- Perform Block Adjustment using only GCP's and not projection centers
- Change image precision measurement to 0.5 or 1 pixel

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

Process Photographs with PHOTOMOD-UAS

- Import and measure GCP's
- Change accuracy of GCP's to a realistic value 1 or 2 cm

A X A Z	GCP list	ê×	Tie poin	ts					
👸 🖊 🛂	· 🔐 💥 🕦	· 🖒 🕶	<u> </u>	_z XYZ 🔥 🕏	A 🐄 🖰 🙍 🖸	k 🖺 🍠 £			
Code	Name 🔺	Туре	X, m	Y, m	Z, m	Std. dev. X, m	Std. dev. Y, m	Std. dev. Z, m	Number of meas
14485	F1	Ground Control	338306.966	4350238.954	117.541	0.01	0.01	0.02	3
14486	F2	Ground Control	337883.247	4350243.324	117.569	0.01	0.01	0.02	6
14487	F3	Ground Control	337998.01	4350838.732	116.675	0.01	0.01	0.02	6
14488	F4	Ground Control	338337.425	4350721.999	116.613	0.01	0.01	0.02	9
14489	F5	Ground Control	338583.66	4351146.602	114.99	0.01	0.01	0.02	7
14490	F6	Ground Control	338305.879	4351268.769	115.715	0.01	0.01	0.02	10
14491	F7	Ground Control	338119.314	4351376.876	115.993	0.01	0.01	0.02	10
14492	F8	Ground Control	338401.621	4351731.967	114.889	0.01	0.01	0.02	4
14493	F9	Ground Control	338644.175	4351521.32	114.686	0.01	0.01	0.02	7

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

Process Photographs with PHOTOMOD-UAS

- Perform Block Adjustment using only GCP's and not projection centers
- Change image precision measurement to 0.5 or 1 pixel

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

RESULTS

- More than 30 villages were processed with the above procedure.
- All RMS errors of GCP's were less than the GSD
- Some samples are give and a final table with accuracies

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

RESULTS

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

RESULTS

	GSD	RMS						
Name	metre	X	Y	Z	$\mathbf{X}\mathbf{Y}$	Exy/GSD	σ_0	terain
AgiosBissarios	0.047	0.013	0.015	0.069	0.02	42.55%	0.944	flat
Argyri	0.044	0.036	0.023	0.048	0.043	97.73%	0.974	mountainous
Bathylakos	0.051	0.01	0.008	0.021	0.013	25.49%	0.92	mountainous
Bragkiana	0.054	0.029	0.018	0.121	0.034	62.96%	0.906	mountainous
Dafnospilia2	0.056	0.022	0.015	0.043	0.027	48.21%	1.039	Hilly
Filia	0.049	0.024	0.033	0.23	0.04	81.63%	0.961	flat
Grimpiana	0.056	0.064	0.068	0.085	0.093	166.07%	0.923	mountainous
KatvKtimeni	0.049	0.015	0.008	0.028	0.017	34.69%	1.034	Hilly
Kedros	0.051	0.024	0.015	0.018	0.028	54.90%	1.02	mountainous
Mavraxades	0.049	0.027	0.009	0.154	0.028	57.14%	0.867	flat
Stefaniada	0.051	0.016	0.003	0.028	0.016	31.37%	1.031	mountainous

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

RESULTS sorted

	GSD	RMS						
Name	metre	X	Y	Z	$\mathbf{X}\mathbf{Y}$	Exy/GSD	σ_0	terain
Grimpiana	0.056	0.064	0.068	0.085	0.093	166.07%	0.923	mountainous
Argyri	0.044	0.036	0.023	0.048	0.043	97.73%	0.974	mountainous
Filia	0.049	0.024	0.033	0.23	0.04	81.63%	0.961	flat
Bragkiana	0.054	0.029	0.018	0.121	0.034	62.96%	0.906	mountainous
Mavraxades	0.049	0.027	0.009	0.154	0.028	57.14%	0.867	flat
Kedros	0.051	0.024	0.015	0.018	0.028	54.90%	1.02	mountainous
Dafnospilia2	0.056	0.022	0.015	0.043	0.027	48.21%	1.039	Hilly
AgiosBissarios	0.047	0.013	0.015	0.069	0.02	42.55%	0.944	flat
KatvKtimeni	0.049	0.015	0.008	0.028	0.017	34.69%	1.034	Hilly
Stefaniada	0.051	0.016	0.003	0.028	0.016	31.37%	1.031	mountainous
Bathylakos	0.051	0.01	0.008	0.021	0.013	25.49%	0.92	mountainous

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

RESULTS

And the accuracy with a Sony RX100 Mark III

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

REASONS

Good targets: can be measured accurately

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

REASONS

- Good targets: can be measured accurately
- Pre-calibrated camera.
- Rigorous and careful adjustment.

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

Final product accuracy

Ok with aerotriangulation data but what is the accuracy of final stereocompilation product?

Below we compare photogrammetric with surveying data In case of a city square.

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

Final product accuracy This is the are to be covered

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

Final product accuracy

A survey crew of 2 persons with GNSS and total station, surveyed the area in **10 hours**.

With office work a final line drawing was produced.

A photogrammetric crew of 2 persons put 5 Ground Control Points, measured them with GNSS and made a drone flight with GSD of 2cm in 1 hour.

A photomod project was set up in the office, stereo compilation work was done producing a 3d line drawing. Other products were DSM, 3DTIN, True Ortho, 3D Model

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

Final product accuracy

The product of the two methods compaired

Field survey

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

Final product accuracy

The product of the two methods compaired Photogrammetric stereo compilation

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

Final product accuracy

The product of the two methods compaired 10 well defined points were compared horizontaly

		difference	difference
TYPE	AA	centimeters	m
surrounding wall	1	3	0.030
surrounding wall	2	1	0.010
surrounding wall	3	0.8	0.008
surrounding wall	4	1.3	0.013
surrounding wall	5	2.8	0.028
building corner	6	2.6	0.026
surrounding wall	7	3.7	0.037
building corner	8	1.6	0.016
surrounding wall	9	0.6	0.006
shaft corner	10	3.8	0.038
	mean	2.12	0.021

18th International Scientific and Technical Conference

Sub pixel aerotriangulation accuracy with a common drone and PHOTOMOD

