16th International Scientific and Technical Conference From Imagery to Map: Digital Photogrammetric Technologies

Photogrammetric methods of 3D-models generation

Victor Adrov Managing Director Racurs, Russia

November, 2016. Agra, India.

Software solutions and services in digital photogrammetry and GIS

We live in three dimensions

2-dimensional representation

2.5-dimensional representation

3D topographic models:

- Geometric quality and accuracy of data
- → Plausibility
- Completeness
- ✤ Up-to-date data
- → Accurate photorealism
- ✤ Rich, real-time, comprehensive visibility
- Advanced analysis

3-dimensional representation

Software solutions and services in digital photogrammetry and GIS

Better representation of the reality

From 2D to 3D representation

From object geometric description to virtual reality

Building

Software solutions and services in digital photogrammetry and GIS

3D model usage and creation challenges

The lack of standards and regulatory documents

- No strict definition and common understanding of the term "topographic 3D model".
- No stated requirements for the model contents.
- No stated requirements for the mathematical description of the models.
- No stated numerical and quality requirements for the output products.
- No stated requirements for the model generalization.
- No standard output data formats ...

End-user problems

- Nowadays fewer and fewer end-users can read conventional 2D maps.
- Common lack of understanding how and why to use topographic 3D models.
- User inflexibility and unwillingness to adopt new conventions of data representation.
- No user-friendly software to handle 3D data.

Computational problems

- Growing volumes of stored data.
- High performance requirements for the computational nodes.
- The lack of analytic and visualization mass-data tools.

Labor intensity

Software solutions and services in digital photogrammetry and GIS

3D topographic models types

Buildings represented by block models

Building models with standard roof structures

Detailed (architectural) building models

LOD 3

Software solutions and services in digital photogrammetry and GIS

www.racurs.ru

-0

Technologies

3D topographic models

2D to 3D Model Extrusion LOD 1

Laser Scanning

LOD 1-4

Software solutions and services in digital photogrammetry and GIS

3D topographic models types

Continuous surface models (point clouds, dDSM)

Object-oriented ("separated") models (DTM / DSM + vector objects)

Generation technology

Full automation

 Semi-automatic or manual, including vectorization of point clouds

Application areas

- Telecommunication engineering
- Natural disasters
- Landscape visualization
- Military operations planning
- Education

- 3D GIS + databases
- city and road planning
- Territory management
- Municipal improvements and landscaping

Software solutions and services in digital photogrammetry and GIS

3D topographic models

Textured and non-textured models

Software solutions and services in digital photogrammetry and GIS

Source remote sensing data for 3D topographic modeling

Photogrammetric technologies (DPW PHOTOMOD)

Dense Digital Surface Models (SGM)

Digital surface model

3D points cloud

3D textured model

Vector object-oriented models

Software solutions and services in digital photogrammetry and GIS

3D model (SGM)

UAV. Camera Delairtech. Ground sample distance (GSD) and DEM cell size - 5 cm. Horizon, France

Software solutions and services in digital photogrammetry and GIS

3D model (SGM)

Aerophoto camera DMC. Ground sample distance (GSD) and DEM cell size - 10 cm. Munich, Germany

Software solutions and services in digital photogrammetry and GIS

3D model (SGM)

Satellite sensor Ikonos. GSD and DEM cell size – 1 m. Airport Domodedovo, Moscow, Russia

Software solutions and services in digital photogrammetry and GIS

Oblique aerial cameras systems data processing

Aerial camera UltraCam Osprey Prime II. Ground sample distance (GSD) and DEM cell size – 7,1 cm

Software solutions and services in digital photogrammetry and GIS

Oblique aerial cameras systems data processing

Aerial camera UltraCam Osprey Prime II. Ground sample distance (GSD) and DEM cell size – 7,1 cm. Graz, Austria

Software solutions and services in digital photogrammetry and GIS

Vector 3D model creation

- Automatic blocks of images orientation
- Automatic DTM creation
- Automatic orthophoto creation
- Semi-automatic stereovectorization
- Automatic buildings 3D-models
 generation by closed polygons set
- Manual and semi-automatic object texturing

Software solutions and services in digital photogrammetry and GIS

www.racurs.n.

Vector 3D model

Satellite sensor Pleiades, Ground sample distance (GSD) – 0.5 m at nadir, Ekaterinburg, Russia

Software solutions and services in digital photogrammetry and GIS

Proc and cons of two types of 3D photogrammetric models

Satellite sensor GeoEye, Ground sample distance (GSD) – 0.5 m at nadir, Novokuznetsk, Russia

Pros and cons of two photogrammetric methods of 3D modeling

Dense DSM

Pros Cons	 Full automation Worse accuracy No way to attach database (no vector objects) More powerful hardware requirements 	
Vector model		
Pros	 High accuracy Ready for 3D GIS (ability to attach database to vector objects) 	
Cons	 A lot of manual work (vectorization and texturing) No automatic facade texturing 	

Software solutions and services in digital photogrammetry and GIS

Automation in vector 3D models generation

Automation in stereovectorization

Software solutions and services in digital photogrammetry and GIS

Automation in vector 3D models generation

Automation of point clouds vectorization

Automation of point clouds segmentation, building and line objects detecting. Auto texturing

Software solutions and services in digital photogrammetry and GIS

PHOTOMOD

Advantages of 3D models generation using PHOTOMOD system

- Integrated solutions: from remote sensing data processing till 3Dmodels generation
- Relevance and high geometry accuracy of 3D topographic models
- High level of automation of 3D-models generation
- Different types of models depending on customer requirements
- Special program for 3D-models visualization and analyze (3D-mod)
- Converting 3D data files to/from different formats

Software solutions and services in digital photogrammetry and GIS

3D-GIS creation

Opportunities of using 3D-GIS functions:

- Linking to a database
- Attributes associated with 3D objects
- Selecting objects with queries
- ✤ Spatial analysis
- Etc

PHOTOMOD + I AUTODESK INFRAWORKS

Software solutions and services in digital photogrammetry and GIS

Height analysis

Software solutions and services in digital photogrammetry and GIS

Sun and shadow studies

→ July 13, 2014. 8-00 a.m.

→ July 13, 2014. 11-00 a.m.

July 13, 2014. 2-00 p.m.

→ July 13, 2014. 5-00 p.m.

→ July 13, 2014. 8-00 p.m.

Software solutions and services in digital photogrammetry and GIS

Telecommunication

Software solutions and services in digital photogrammetry and GIS

Emergency planning

Software solutions and services in digital photogrammetry and GIS

Planning. Public consultation

Software solutions and services in digital photogrammetry and GIS

Rapid prototype models

Software solutions and services in digital photogrammetry and GIS

Thank you for the attention!

Software solutions and services in digital photogrammetry and GIS

www.racurs.ru

in