

ROSCARTOGRAPHY JSC

Satellite and aircraft monitoring

Creating topographic maps and plans

Thematic mapping

Integrated information analysis system

Unified electronic cartographic base

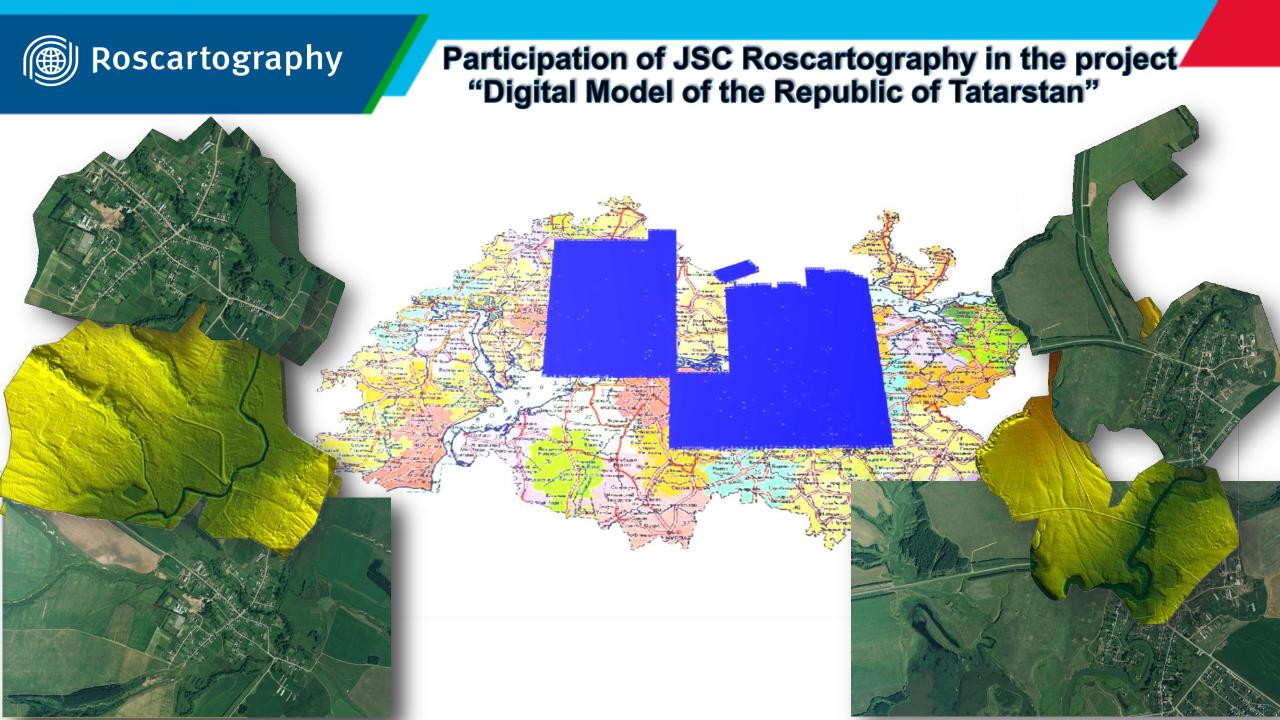
Navigation map

Photogrammetric processing and mapping

Navigational support

Land surveying

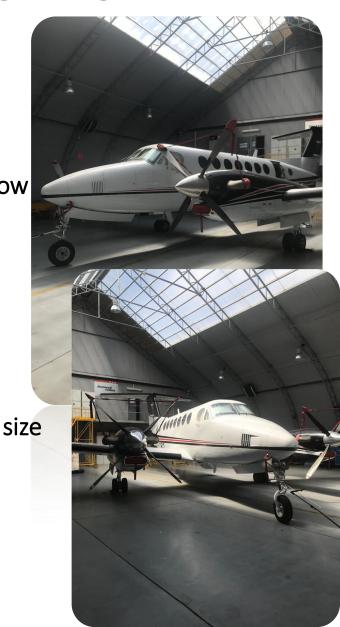
Geodetic surveys



GIS and BIM

Roscartography JSC in the National Project "Digital economy of the Russian Federation"

The new Leica DMC III - breaking new ground


Large format airborne camera for wide area mapping

Unprecedented productivity with high performance workflow

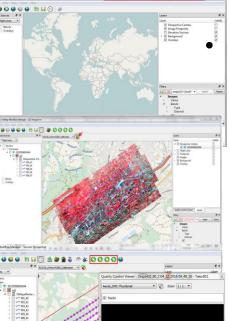
Revolutionary CMOS technology

Reduced data acquisition cost due to increased sensor size

Leica DMC III product specifications

PAN	
Pixel across track	25,728
Pixel along track	14,592
FoV across track	57.2°
FoV along track	34.4°
Focal length	92 mm
Pixel size	3.9 μm
GSD (500m)	2.1 cm

GENERAL			
Weight	63 kg		
Number of camera heads	5		
Resolution per pixel	14-bit		
Colour channels	R,G,B, NIR		
Frame rate	1.9 sec		
Dynamic range (CMOS)	78 dB		
Onboard storage	9.6 TB to store up to 7900 images		
Operating temperature: Camera control electronic Optics	0°C to +40°C, upper part -20°C to +40°C, lower part		


MS	
Pixel across track	8,956
Pixel along track	6,708
FoV across track	61.7°
FoV along track	48.2°
Focal length	45.0 mm
Pixel size	6.0 μm
GSD (500m)	6.7 cm

FLYING HEIGHT AND SWATH WIDTH			
GSD, cm	Flying height, m	Swath width, m	
3	708	772	
5	1,179 1,286		
10	2,359	2,573	
15	3,538	3,859	
20	4,718	5,146	
25	5,897	6,432	
30	7,077	7,718	
33	7,785	8,490	
35	8,256	9,005	
40	9,436	10,291	

MAXIMUM GROUND SPEED, kts				
GSD, cm	60 % forward overlap 80 % forward overl			
3	161	81		
5	213	108		
10	267	135		
15	325	162		
20	370	189		
25	431	215		
30	541	271		
33	640	319		
35	781	406		
40	1,074	537		

Roscartography

WFM Hxmap

Fastest, most intuitive postprocessing workflow for airborne sensors
Saving you time and costs

Unprecedented data throughput

Easily adaptable to your needs

Software

DPW PHOTOMOD

Complete image data processing workflow without third party products

 Full line of data output: DTMs, 3D vectors, orthoimages, digital maps

High level of automation for main photogrammetric operations

Flexible modular architecture: you only buy what you need

High productivity

Distributed network configurations for large projects implementation

 Ease of use: you are guided step-by-step through all stages of project processing

Prompt and effective technical support

WFM HxMap Processing Workflow

- Raw Perspective
- Download raw session with full flight metadata
- Extraction of GPS/IMU data for processing
- Display session + image thumbnails
- Initial QC
- Raw data Ingest

Ingest

- Applies camera calibration
- Calculation of statistics and assign radiometric adjustment
- Calculation of EVO by GNSS / IMU trajectory
- Creating intermediate image data
- Geo-referencing

QC Perspective

- QC of image data after Ingest
- Review and determine radiometric settings
- Creation of blocks from sessions
- Product Generation Perspective
- Create templates and define product specifications
- Export EOP(exterior orientation parameters)
- Pan-sharpening
- Launch product generation process

DPW PHOTOMOD Processing Workflow

PHOTOMOD Montage Desktop

Project creation and management, initial data input, block-wide operations, choose coordinate system, camera parameter input for project

- module PHOTOMOD AT
- -Interior orientation for images
- -Automatically measure tie points
- -Ground control point measurements
- -Relative orientation
- module PHOTOMOD Solver A

Making block adjustments to image blocks (common model construction and exterior orientation)

module dDSM

Building dense digital surface models with a cell size corresponding to 1 pixel of image Semi-Global Matching (SGM) method

- module of Digital Terrain Model (DTM)
- -Editing the digital terrain model
- -Automatic filtering of objects located above the ground
- -Manual stereo-editing objects
- module PHOTOMOD Mosaic

Creation orthotransformation images

The resultant mosaic is created as a single raster image

module PHOTOMOD GEOMosaic

Quality and performance

Steps	Volume of work	Times	Results	Quality
Aerial survey	19250 кв. км	9 days	10245 images	100% cloud-free coverage
Post-processing HxMap	19250 кв. км	15 days	10245 images	radiometric and geometric image correction
Creation orthotransformation images and DTM	1000 кв. км	2 months	1200 нл	The accuracy of scale 1: 2000

Conclusion

Scientific and technological progress places great demand on geospatial data. Roscartography JSC creates optimal conditions for the development of technological potential and expands the range of digital geospatial products for public sector and commercial users with an up-to-date and modern cartographic and geodetic basis.

Roskartography JSC constantly introduces new technologies for creating digital geospatial data, equips workstations with modern computer equipment and high-speed optical communication systems, introduces modern software into an industry from companies such as Racurs, Hexagon, Trimble and others and attracts more highly qualified specialists.

Thank you for attention!

Volgogradsky prospekt, 45, bld. 1 Moscow, 109316

Russia

tel: (499) 177-50-00

Fax: (499) 177-59-00

e-mail: info@roscartography.ru